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Problem Statement
We are interested in the constrained minimization of a large sum of nonconvex functions
defined as:

min
θ∈Θ

f (θ) ,
N∑
i=1

fi(θ)

 (1)

Beforehand, let T (Θ) be a neighborhood of Θ and assume that:

M 1. For all i ∈ JNK, fi is continuously differentiable on T (Θ).

M 2. For all i ∈ JNK, fi is bounded from below, i.e. there exist a constant Mi ∈ R such as
for all θ ∈ Θ, fi(θ) ≥Mi.

For any θ ∈ Θ and i ∈ JNK, we say, following [Mairal, 2015] that a function fi,θ : Rp→ R is a
surrogate of fi at θ if the following properties are satisfied:

• the function ϑ→ fi,θ(ϑ) is continuously differentiable on T (Θ)

• for all ϑ ∈ Θ, fi,θ(ϑ) ≥ fi(ϑ) , fi,θ(θ) = fi(θ) and ∇fi,θ(ϑ)
∣∣∣
ϑ=θ

= ∇fi(ϑ)
∣∣∣
ϑ=θ

.

The gap fi,θ − fi plays a key role in the convergence analysis and we require this error
to be L-smooth for some constant L > 0 Denote by 〈·, ·〉 the scalar product, we also
introduce the following stationary point condition:

Definition 1. (Asymptotic Stationary Point Condition)
A sequence (θk)k≥0 satisfies the asymptotic stationary point condition if

lim inf
k→∞

inf
θ∈Θ

〈∇f (θk), θ − θk〉
‖θ − θk‖2

≥ 0. (2)

MISO Scheme
The incremental scheme of [Mairal, 2015] computes surrogate functions, at each itera-
tion of the algorithm, for a mini-batch of components:

Algorithm 1 MISO algorithm
Initialization: given an initial parameter estimate θ0, for all i ∈ JNK compute a surrogate
function ϑ→ fi,θ0(ϑ).
Iteration k: given the current estimate θk−1:

1. Pick a set Ik uniformly on {A ⊂ JNK, card(A) = p}
2. For all i ∈ Ik and compute ϑ→ fi,θk−1(ϑ), a surrogate of fi at θk−1.

3. Set θk ∈ arg min
ϑ∈Θ

∑N
i=1 a

k
i (ϑ) where aki (ϑ) are defined recursively as follows:

aki (ϑ) ,

{
fi,θk−1(ϑ) if i ∈ Ik
ak−1
i (ϑ) otherwise

(3)

MISSO Scheme
•Case when the surrogate functions computed in Algorithm 1 are not tractable.

•Assume that the surrogate can be expressed as an integral over a set of latent vari-
ables z = (zi ∈ Zi, i ∈ JNK) ∈ Z where Z =×N

i=1 Zi where Zi is a subset of Rmi.

fi,θ(ϑ) ,
∫
Zi
ri,θ(zi, ϑ)pi(zi, θ)µi(dzi) for all (θ, ϑ) ∈ Θ2. (4)

•Our scheme is based on the computation, at each iteration, of stochastic auxiliary
functions for a mini-batch of components. For i ∈ JNK, the auxiliary function, noted
f̂i,θ(ϑ) is a Monte Carlo approximation of the surrogate function fi,θ(ϑ) defined by (4)
such that:

f̂i,θ(ϑ) ,
1

M

M−1∑
m=0

ri,θ(z
m
i , ϑ) for all (θ, ϑ) ∈ Θ2 (5)

where {zmi }
M−1
m=0 is a Monte Carlo batch.

Algorithm 2 MISSO algorithm
Initialization: given an initial parameter estimate θ0, for all i ∈ JNK compute the function
ϑ→ f̂i,θ0(ϑ) defined by (5).
Iteration k: given the current estimate θk−1:

1. Pick a set Ik uniformly on {A ⊂ JNK, card(A) = p}
2. For all i ∈ Ik, sample a Monte Carlo batch {zk,mi }Mk−1

m=0 from pi(zi, θ
k−1).

3. For all i ∈ Ik, compute the function ϑ→ f̂i,θk−1(ϑ) defined by (5).

4. Set θk ∈ arg min
ϑ∈Θ

∑N
i=1 â

k
i (ϑ) where âki (ϑ) are defined recursively as follows:

âki (ϑ) ,

{
f̂i,θk−1(ϑ) if i ∈ Ik
âk−1
i (ϑ) otherwise

(6)

Convergence Guarantees Assumptions
Whether we use Markov Chain Monte Carlo or direct simulation, we need to control
the supremum norm of the fluctuations of the Monte Carlo approximation. Let i ∈ JNK,
{ji(zi, ϑ), zi ∈ Zi, ϑ ∈ Θ} be a family of measurable functions, λi a probability measure on
Zi ×Zi. We define:

Ci(ji) , sup
θ∈Θ

sup
M>0

M−1/2Ei,θ

 sup
ϑ∈Θ

∣∣∣∣∣∣
M−1∑
m=0

{
ji(z

m
i , ϑ)−

∫
Zi
ji(zi, ϑ)pi(zi, θ)λi(dzi)

}∣∣∣∣∣∣
 (7)

M 3. For all i ∈ JNK and θ ∈ Θ:

lim
k→∞

Ci(ri,θ) <∞ and lim
k→∞

Ci(∇ri,θ) <∞. (8)

M 4. {Mk}k≥0 is a non deacreasing sequence of integers which satisfies
∑∞
k=0M

−1/2
k <∞.

Theorem: MISSO Convergence Guarantees

Assume M1-M4. Let
(
θk
)
k≥1

be a sequence generated from θ0 ∈ Θ by the iterative ap-

plication described by Algorithm 2. Then:

(i)
(
f (θk)

)
k≥1

converges almost surely.

(ii)
(
θk
)
k≥1

satisfies the Asymptotic Stationary Point Condition.

Application to Variational Bayesian Inference
• Let x = (xi, i ∈ JNK) and y = (yi, i ∈ JNK) be i.i.d. input-output pairs and w be a global

latent variable taking values in W as subset of RJ . A natural decomposition of the joint
distribution is:

p(y, x, w) = p(w)

N∏
i=1

pi(yi|xi, w) (9)

The goal is to calculate the posterior distribution p(w|y, x).
•Variational inference problem boils down to minimizing the following KL divergence:

θ∗ = arg min
θ∈Θ

KL(q(w; θ) ‖ p(w|y, x)) = arg min
θ∈Θ

f (θ) (10)

where for all θ ∈ Θ, f (θ) =
∑N
i=1 fi(θ) with :

fi(θ) , −
∫
W
q(w; θ) log pi(yi, xi|w)dw +

1

N
KL(q(w; θ) ‖ p(w)) = ri(θ) + d(θ) (11)

•Define following quadratic surrogate at θ ∈ Θ:

fi,θ(ϑ) , fi(θ) +∇fi(θ)>(ϑ− θ) +
L

2
‖ϑ− θ‖22 (12)

where ‖ · ‖2 is the `2-norm and L is an upper bound of the spectral norm of the Hessian
of fi at θ.

• Reparametrization trick: We assume that for all θ ∈ Θ, the distribution of the random
vector W = t(θ, e) where e ∼ Nd(0, Id) has a density q(·, θ). Then, following [Proposi-
tion 1]blundell:

∇
∫
W

log pi(yi, xi|w)q(w, θ)dw =

∫
W

J(θ, e)∇ log pi(yi, xi|t(θ, e))φ(e)de

where for each e ∈ Rd, J(θ, e) is the Jacobian of the function t(·, e) with respect to θ.

• The pair
(
ri,θ(e, ϑ), φ(e)

)
defining fi,θ(ϑ) is given by:

ri,θ(e, ϑ) , (− log pi(yi, xi|t(θ, e)) + d(θ))

+ (− J(θ, e)∇ log pi(yi, xi|t(θ, e)) +∇d(θ))> (ϑ− θ) +
L

2
‖ϑ− θ‖22 (13)

The MISSO algorithm consists in:

1. Picking a set Ik uniformly on {A ⊂ JNK, caBelhalrd(A) = p}.
2. Sampling a Monte Carlo batch {ek,m}Mk−1

m=0 from the standard Gaussian distribution.

3. Setting θk = arg min
θ∈θ

∑N
i=1 â

k
i (θ) where âki are defined recursively as follows:

âki (θ) ,

{
1
Mk

∑Mk−1
m=0 ri,θk−1(e

k,m, θ)) if i ∈ Ik
âk−1
i (θ) otherwise

(14)

Training a Bayesian Neural Network on MNIST

Settings
• 2-layer bayesian neural network
• Tanh activation function
• Standard Gaussian prior on the

weight
•Gaussian variational posterior inde-

pendent of i and l (layers)

p(w) = N (0, Id)

p(yi|xi, w) = Softmax(f (xi, w))

• Input layer d = 784

•A single hidden layer of p = 100 hy-
perbolic tangent units

• Final softmax output layer with K =
10 classes

•MNIST dataset N = 60 000

Figure 1: ELBO convergence.
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