Random Matrix-Improved Kernels for Large Dimensional Spectral Clustering
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Context:

» Kernel spectral clustering in the “large n, large p” regime.

» Gaussian mixture model with “non-trivial” class separability.
» Asymptotic performance analysis and improvement.

Take away:

» Proven suboptimality of “classical” kernels.

» Improved kernel design with optimal separability properties.
» Dramatic performance improvements in simulations.

Ill - Main Results

Theorem (Asymptotic Equivalent for K)

| - Model and Assumptions

Setting and Basic Assumptions

{x1,...,xn1 e C
Data: x1,...,x, € RP, with < ...
Xn—n+1,---,Xn € Ck.
Class definition:

Xi € Cas X~ N(pa Cs).
Growth rates: As n — oo, k remains fixed, and

p/n— cy >0, nyg/n— cys>0.

For f such that f'(0) = -, 3f"(0) = 3, as n, p — oo,
IK — K|| 20
where

VPK = aPWTWP + 3PoP + UAUT — (£(0) + 7f/(0))P

with
1

W=l omil, &y = V| ()T Wf)2 — 1 CaCol 11

U= |5 PWIM| J =ity Ja= (0, 10, 0)

oM™ + BT aly o O 1
Oz/k O:| ’ M—[M1,...,/Lk], T—ﬁ{trCaCb}.
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—> Kernel is “Neyman—Pearson optimal”, both in means and covariances.

Theorem (Limiting Eigenvalue Distribution)

Assumption (Neyman—Pearson Optimal Separability Rate)

Asp — oo, foralla,b e {1,... k},
> || 112 — pol| = O(1)
»||C,|| bounded, |tr(C;— Cp)| = O(y/p), tr((Ca— Cp)?) = O(\/P).

>StrC° — 7 with C° = Sk 1 C,and T > 0.

As n,p — oo,

1o c
Un = Ez&\i(;{) — UV
|=

with v given by its Stieltjes transform m(z) = @, unique solution of
1 Qa am(z) )1 232 (1 2)2
=—zZ+—trC° | Ip+ C° m(z) [ —tr(C° .
m(z) p ( P Co Co ( ) p ( )

(Inner Product) Kernel Matrix

Mixed Marcenko—Pastur & Wignher Spectrum

Object of interest: With x7 = x; — 1 >~ ; x;, define

K=P {f (%(xf)%g?) 1,-#,} P

where P = I, — 11,17 and f three-times differentiable around 0.

(f(311xi — x;[|?) could be treated similarly)

Objective: Study:
» [imiting spectrum of K (eigenvalues + eigenvectors)
» clustering performances.

Il - The Importance of f(f) Around { =0

Previous Findings and Motivation

Key Result: As n, p — oo, and assumption above,
»for all / # J, irrespective of the class,

1, T 1 5 1 5
—(x7)' x7 — 0, —=|X'||©—71, =—I||Xi—Xl|—T
,0( /) | ,OH ] H 2,0“ ! /H

» counter-intuitive curse of dimensionality: all vectors are far.

»but allows for Taylor-expansion of Kj; around f(0):

1 1 1 1

(for X; = pia + Wi, Xj = pp + w;)

Consequences:

» [C,Benaych’16] Relaxing assumptions as tr((C, — Cp)?) = O(p):
« Spectrum of K is Marcenko—Pastur like
e Phase transition phenomenon
e Special behavior when f/(0) = 0!

f'(0) = 0 “kills the noise” BUT “kills the means”.

»[K,C’'17] For tr((C, — Cp)?) = O(\/P), 11 = ... = px and f'(0) = 0:
o Spectrum of K is semi-circle like
e Phase transition phenomenon
e But statistical means cannot be used.

» PWTWP: Marcenko—Pastur like spectrum
» POP: semi-circle (Wigner) like spectrum
» UAU': produces spikes under phase transition!
1 «
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Here for f(x) = %5 (x | @5) ,
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Figure: Eigenvalues of K versus limiting law, p = 2048, n = 4096, k = 2, n1 = no, u; = 390;.

IV — Application

Performance of Kernel Spectral Clustering

A New Kernel Design

DATASETS |1 — p2|® 5t(Cr — C2)? RATIO
MINIST (DIGITS 1,7) 613 1990 3.2
MINIST (DIGITS 3, 6) 441 1119 2.5
MINIST (DIGITS 3, 8) 212 652 9.0
EEG (SETS A, E) 2.4 109 45 .4
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Figure: Spectral clustering accuracy of MNIST and EEG, versus Gaussian kernel (dashed).

For some «, 5 > 0, we choose f such that
o 1

F(0) ==, —~f(0)

B 20=6

Open Questions

» Online estimation of optimal («, )

» Similar behavior for kernel f(%)(x;’)Tx/?) but difficult to analyze.
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