Random Matrix-Improved Kernels for Large Dimensional Spectral Clustering

Hafiz Tiomoko Ali¹, Abla Kammoun², Romain Couillet^{1,3}

¹LSS, CentraleSupélec, Université ParisSaclay, France. ²KAUST University, Saudi Arabia. ³GIPSA-lab, Université Grenoble Alpes, France.

Abstract

Context:

- ► Kernel spectral clustering in the "large *n*, large *p*" regime.
- ► Gaussian mixture model with "non-trivial" class separability.
- ► Asymptotic performance analysis and improvement.

Take away:

- ► Proven suboptimality of "classical" kernels.
- ► Improved kernel design with optimal separability properties.
- ► Dramatic performance improvements in simulations.

I – Model and Assumptions

Setting and Basic Assumptions

Data:
$$x_1, \ldots, x_n \in \mathbb{R}^p$$
, with
$$\begin{cases} x_1, \ldots, x_{n_1} \in \mathcal{C}_1 \\ \ldots \\ x_{n-n_k+1}, \ldots, x_n \in \mathcal{C}_k. \end{cases}$$

Class definition:

$$\mathbf{x}_i \in \mathcal{C}_{\mathbf{a}} \Leftrightarrow \mathbf{x}_i \sim \mathcal{N}(\mu_{\mathbf{a}}, \mathbf{C}_{\mathbf{a}}).$$

Growth rates: As $n \to \infty$, k remains fixed, and

$$p/n \rightarrow c_0 > 0$$
, $n_a/n \rightarrow c_a > 0$.

Assumption (Neyman–Pearson Optimal Separability Rate)

As $p \to \infty$, for all $a, b \in \{1, \dots, k\}$,

- $| | | \mu_a \mu_b | | = O(1)$
- $ho \|C_a\|$ bounded, $|\operatorname{tr}(C_a-C_b)|=O(\sqrt{p})$, $\operatorname{tr}((C_a-C_b)^2)=O(\sqrt{p})$.
- $ightharpoonup rac{1}{n} \operatorname{tr} C^{\circ} o au \ \text{with} \ C^{\circ} \equiv \sum_{a=1}^{k} rac{n_a}{n} C_a \ \text{and} \ au > 0.$

(Inner Product) Kernel Matrix

Object of interest: With $x_i^{\circ} = x_i - \frac{1}{n} \sum_{j=1}^n x_j$, define

$$K = P \left\{ f \left(\frac{1}{p} (x_i^{\circ})^{\mathsf{T}} x_j^{\circ} \right) 1_{i \neq j} \right\} P$$

where $P = I_p - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^\mathsf{T}$ and f three-times differentiable around 0.

$$(f(\frac{1}{p}||x_i - x_j||^2)$$
 could be treated similarly)

Objective: Study:

- ► limiting spectrum of *K* (eigenvalues + eigenvectors)
- clustering performances

II – The Importance of f(t) Around t = 0

Previous Findings and Motivation

Key Result: As $n, p \to \infty$, and assumption above,

▶ for all $i \neq j$, irrespective of the class,

$$\frac{1}{p}(x_i^{\circ})^{\mathsf{T}}x_j^{\circ} \to 0, \quad \frac{1}{p}\|x_i^{\circ}\|^2 \to \tau, \quad \frac{1}{2p}\|x_i - x_j\|^2 \to \tau.$$

- counter-intuitive curse of dimensionality: all vectors are far.
- but allows for Taylor-expansion of K_{ij} around f(0):

$$K_{ij} = f(0) + f'(0) \left[\frac{1}{p} \mu_a^\mathsf{T} \mu_b + \frac{1}{p} w_i^\mathsf{T} w_j + \ldots \right] + \frac{1}{2} f''(0) \left[\frac{1}{p} \operatorname{tr} C_a C_b + \ldots \right] + o(1)$$

(for $x_i = \mu_a + w_i$, $x_i = \mu_b + w_i$)

Consequences:

- ► [C,Benaych'16] Relaxing assumptions as $tr((C_a C_b)^2) = O(p)$:
 - Spectrum of K is Marcenko–Pastur like
- Phase transition phenomenon
- Special behavior when f'(0) = 0!

f'(0) = 0 "kills the noise" **BUT** "kills the means".

- ►[K,C'17] For $\operatorname{tr}((C_a C_b)^2) = O(\sqrt{p}), \mu_1 = \ldots = \mu_k \text{ and } f'(0) = 0$:
- Spectrum of K is semi-circle like
- Phase transition phenomenon
- But statistical means cannot be used.

A New Kernel Design

For some $\alpha, \beta > 0$, we choose f such that

$$f'(0)=\frac{\alpha}{\sqrt{p}}, \quad \frac{1}{2}f''(0)=\beta.$$

III - Main Results

Theorem (Asymptotic Equivalent for *K*)

For f such that $f'(0) = \frac{\alpha}{\sqrt{p}}$, $\frac{1}{2}f''(0) = \beta$, as $n, p \to \infty$,

$$\|K - \hat{K}\| \xrightarrow{\text{a.s.}} 0$$

where

$$\sqrt{p}\hat{K} \equiv \alpha P W^{\mathsf{T}} W P + \beta P \Phi P + U A U^{\mathsf{T}} - (f(0) + \tau f'(0)) P$$

with

$$W = [w_1, \dots, w_n], \quad \Phi_{ij} = \sqrt{p} \left[((w_i^\circ)^\mathsf{T} w_j^\circ)^2 - \frac{1}{p^2} \operatorname{tr} C_a C_b \right] \mathbf{1}_{i \neq j}$$

$$U = \left[\frac{J}{\sqrt{p}}, PW^\mathsf{T} M \right], \quad J = [j_1, \dots, j_k], \quad j_a = (0, \dots, \mathbf{1}_{n_a}, \dots, 0)^\mathsf{T}$$

$$A = \begin{bmatrix} \alpha M^\mathsf{T} M + \beta T & \alpha I_k \\ \alpha I_k & 0 \end{bmatrix}, \quad M = [\mu_1^\circ, \dots, \mu_k^\circ], \quad T = \frac{1}{\sqrt{p}} \{ \operatorname{tr} C_a C_b \}.$$

⇒ Kernel is "Neyman–Pearson optimal", both in means and covariances.

Theorem (Limiting Eigenvalue Distribution)

As $n, p \to \infty$,

$$\nu_n \equiv \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i(K)} \xrightarrow{\mathcal{L}} \nu$$

with ν given by its Stieltjes transform $m(z) = \int \frac{\nu(d\lambda)}{\lambda - z}$, unique solution of

$$\frac{1}{m(z)} = -z + \frac{\alpha}{p} \operatorname{tr} C^{\circ} \left(I_{p} + \frac{\alpha m(z)}{c_{0}} C^{\circ} \right)^{-1} - \frac{2\beta^{2}}{c_{0}} m(z) \left(\frac{1}{p} \operatorname{tr} (C^{\circ})^{2} \right)^{2}.$$

Mixed Marcenko-Pastur & Wigner Spectrum

- ► *PW*^T*WP*: Marcenko–Pastur like spectrum
- ► PΦP: semi-circle (Wigner) like spectrum
- ► UAU^T: produces spikes under phase transition!

Here for
$$f(x) = \frac{1}{2}\beta \left(x + \frac{1}{\sqrt{p}\beta}\right)^2$$
,

Figure: Eigenvalues of K versus limiting law, p=2048, n=4096, k=2, $n_1=n_2$, $\mu_i=3\delta_i$.

IV – Application

Performance of Kernel Spectral Clustering

DATASETS	$\ \mu_1 - \mu_2\ ^2$	$\frac{1}{\sqrt{p}}\operatorname{tr}(C_1-C_2)^2$	RATIO
MINIST (DIGITS 1,7)		1990	3.2
MINIST (DIGITS 3, 6)	441	1119	2.5
MINIST (DIGITS 3, 8)	212	652	9.0
EEG (SETS A, E)	2.4	109	45.4

Figure: Spectral clustering accuracy of MNIST and EEG, versus Gaussian kernel (dashed).

Open Questions

- ▶ Online estimation of optimal (α, β)
- Similar behavior for kernel $f(\frac{1}{\sqrt{p}}(x_i^\circ)^T x_j^\circ)$ but difficult to analyze.