A Tractable Approach for One-Bit Compressed Sensing on Manifolds

Compressed Sensing

Recover **unknown** signal \(x \in \mathbb{R}^D \) from \(m \ll D \) measurements

\[
y = Ax
\]

under following assumptions:
- \(x \) is \(s \)-sparse, i.e., at most \(s \) entries are non-zero
- measurement matrix \(A \in \mathbb{R}^{m \times D} \) is known
- \(y \in \mathbb{R}^m \) with \(y_i = (a_i, x)_j \), \(i = 1, \ldots, m \) is given.

Recovery: Sparcity of \(x \) allows recovery by efficient algorithms with

\[
m \geq C s \log \frac{D}{s}
\]

measurements where \(C > 0 \) is an absolute constant.

Problem Formulation

Recover **unknown** signal \(x \in \mathbb{R}^D \) from \(m \ll D \) one-bit measurements

\[
y = \text{sign}(Ax)
\]

under following assumptions:
- \(x \in \mathcal{M} \), where \(\mathcal{M} \) is a low-dimensional manifold of intrinsic dimension \(d \ll D \) which lies on the unit sphere \(S^{D-1} \)
- measurement matrix \(A \in \mathbb{R}^{m \times D} \) with iid Gaussian entries
- \(y \in \{-1, 1\}^m \)

Observation: One-bit measurements of type (2) tessellate \(S^{D-1} \) into a collection of distinguishable cells (see Figure 1).

Definition GMRA, [1]

Let \(J \in \mathbb{N} \) and \(k_0, k_1, \ldots, k_J \in \mathbb{N} \). For each \(j \in [J] := \{0, \ldots, J\} \) we assume to have sets \(\mathcal{E}_j \subset \mathbb{R}^D \) of centers and

\[
\mathcal{D}_j = \{ P_{j,k} : \mathbb{R}^D \to \mathbb{R}^{k_j} | k_j \in [k_j]\}
\]

of corresponding affine projectors which approximate \(\mathcal{M} \) at scale \(j \). These form a GMRA for \(\mathcal{M} \) if several assumptions (see [1]) are met.

Reconstruction Algorithm

Algorithm: One-bit Manifold Sensing (OMS)

1. **Identify** center \(c_{j,k} \) close to \(x \) via

\[
\bar{c}_{j,k} \in \arg \min_{j,k} d_{\mathcal{H}}(\text{sign}(Ac_{j,k}), y)
\]

where \(d_{\mathcal{H}} \) is the Hamming distance, i.e., \(d_{\mathcal{H}}(z, z') := |\{i : z_i \neq z'_i\}| \).

2. **If** \(d_{\mathcal{H}}(\text{sign}(Ac_{j,k}), y) = 0 \), **directly** choose \(\hat{x} = c_{j,k} \).

3. **If not,** recover the projection of \(x \) onto \(P_{j,k} \), i.e., \(P_{j,k}(x) \) by

\[
\hat{x} = \arg \min_{x \in \mathbb{R}^D} \sum_{k \in [k_j]} (\gamma_i)(a_i, x)
\]

subject to \(z \in \text{conv}(\{P_{j,k} : \mathcal{D}_j \cap \mathcal{M}, (0, 2)\}) \)

This reconstruction strategy combines

1. compressed sensing for signals on general manifolds (Iwen and Maggioni [2])
2. noisy one-bit compressed sensing (Plan and Vershynin [3]).

Main Result

Notation: Denote by \(w(A) \) the Gaussian mean width

\[
w(A) = \mathbb{E} \sup_{w \in A} |\langle g, z \rangle|, \quad g \sim N(0, I),
\]

which reflects the manifold’s complexity.

Theorem

There exist constants \(E, E', c > 0 \) depending on the GMRA quality such that the following holds. Let \(x \in \{0, 1/16\} \) and assume \(J \geq 10 \log(1/\sqrt{E'}) \). If

\[
m \geq E E' c^2 \max \left\{ w(A), \sqrt{d \log(1/\sqrt{E})} \right\}^2
\]

Then, with probability at least \(1 - 12 \exp(-c^2 m) \) for all \(x \in \mathcal{M} \) the approximation \(\hat{x} \) fulfills

\[
|x - \hat{x}|^2 \leq E c.
\]

If the GMRA is created from random samples of \(\mathcal{M} \) the same result holds true with slightly changed constants and probability.

Numerical Simulation

Based on GMRA code provided by Mauro Maggioni, with following parameters:

- 20000 data points sampled from the 2-dimensional sphere \(\mathcal{M} \) embedded in \(\mathbb{R}^{D-1} \)
- fixed GMRA computed up to \(J = 10 \) refinement levels
- recovery of 100 randomly chosen \(x \) lying on \(\mathcal{M} \)

References

Acknowledgment: We gratefully acknowledge the support by the Deutsche Forschungsgemeinschaft (DFG) in the context of SFB Transregio 109 and SPP 1798.