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1. Introduction

Estimating the risk of extreme natural hazards has been a major
issue in recent decades, but has been limited to the exploita-
tion of historical catalogs, which usually do not exceed 40 to
50 years, and to numerical models, which require heavy com-
putation while being unreliable for extrapolation above observed
intensities.

Extreme Value Theory provides a theoretical framework to de-
scribe and model tails of statistical distributions. This poster
describes a statistical procedure to learn the extremal behav-
ior of rare events in order to build models that can quantify the
recurrence of past events as well as safely extrapolate above
observed intensity levels. With this methodology, we develop a
stochastic weather generator for extreme windstorms over Eu-
rope.

2. Univariate extreme value theory

Under mild conditions on a random variable X, the central limit
theorem gives
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→ N(0, σ2), n→∞,

with µ ∈ R, σ > 0, and thus normal distribution is a universal
approximation of

∑n
i=1Xi up to an affine rescaling. The gener-

alized Pareto distribution

Hξ,σ(x) =

{
(1 + ξx/σ)

−1/ξ
+ , ξ 6= 0,

exp (−x/σ) , ξ = 0.

where σ > 0 and a+ = max(a, 0) has a similar role in approx-
imating tail distributions. Indeed, for a sequence of increasing
theshold un,

Pr (X − un > x | X > un)→
{
Hξ,σ(x)
0,

, n→∞. (1)

The tail index ξ determines the regime of tail decay:
• ξ > 0: Fréchet type with x ≥ µ and polynomial tail decay,
• ξ = 0: Gumbel type with x ≥ µ and exponential tail decay,
• ξ < 0: Weilbull type with bounded tail, x ∈ (u, u− σ/ξ).

Since the generalized Pareto distribution is the only possible limit
distribution for threshold exceedances, for any random variable
X and large enough threshold u < inf{x : F (x) = 1}, the approx-
imation

Pr (X − u > x | X > u) ≈ Hξ,σ(x).

provides a model for tails, which is, due to (1), safe for extrap-
olation above observed intensities. However, severe climatic
events, such as floods, windstorms, heatwaves, cannot be mod-
elled using only univariate extreme value theory, as it fails to
capture their spatio-temporal nature.

3. Functional peaks-over-threshold analysis

3.1 Functional exceedance
Characterisation of an exceedance for a univariate quantity is
straightforward: for some threshold u > 0, any observation X
such that X > u is defined as an exceedance. When X is a
function the definition of an exceedance can be less intuitive.

If X ∈ C(S) is a continuous function over a compact subset
S ⊂ Rd, we define an exceedance as an event {r(X) > u},
where r is a monotonic increasing functional, called a ‘risk func-
tional’. Common examples are
• sups∈SX(s) for events where X exceeds a threshold at least

at one location;
•
∑T
t=1

∫
SXt(s)ds for spatio-temporal accumulation;

•
√∫

SX(s)2ds as a proxy of the energy inside a system;

•X(s0), for risks at a specific location s0 ∈ S.

3.2 r-Pareto process
A generalized r-Pareto process P (de Fondeville and Davison,
2018a) is defined by

P =

{
R W

r(W )
, ξ 6= 0,

R + logW − r(logW ), ξ = 0,

where
•R, called the radial component, is univariate generalized

Pareto with tail parameter ξ, and distribution function

Pr(R > ρ) =

(
1 + ξ

ρ− u
σ

)−1/ξ

, ρ > u > 0,

with σ > 0. R determines the intensity of the r-exceedance;
•W , the angular component, is a stochastic process on the unit

sphere {x ∈ C(S) : ‖x||1 = 1} with probability measure σang,
which determines the dependence of P .

• The r-exceedance distribution of P is

Pr {r(P ) > ρ} =

(
1 + ξ

ρ− u
σ

)−1/ξ

, ρ > u.

• The generalized r-Pareto process has generalized Pareto
marignals above a sufficiently high threshold u0 > 0:

Pr {P (s0) > ρ | P (s0) > u0} =

{
1 + ξ

ρ− µ(s0)

σ(u0)

}−1/ξ

, ρ > u0,

with σ(u0) > 0 and µ(s0) ∈ R

3.3 Convergence
The r-Pareto process is the only possible limit of rescaled thresh-
old exceedances, i.e.,

Pr (X − un ∈ · > x | r(X) > un)→
{

Pr (P ∈ ·) ,
0,

, n→∞.

(2)
and thus for a stochastic process X and large enough threshold
u > 0,

Pr (X ∈ A) ≈ Pr{r(X) > u} × Pr (P ∈ ·) , (3)

with A ⊂ {x ∈ C(S) : r(x) > u}.

Consequently the generalized r-Pareto process models the tail
of any stochastic process X and the convergence (2) ensures
safe extrapolation above observed intensities. In equation (3),
Pr{r(X) > u} represents the overall probability of observing an
extreme event, while the part relative to the r-Pareto process de-
scribes the intensity and pattern of the r-exceedances.

4. Statistical modelling

For a threshold u > 0 and risk functional r, the density function
f r
θ of the generalized r-Pareto process is

f r
θ(x) =

λr
θ(x)

Λθ{Ar(u)}
, x ∈ Ar(u),

with Ar(u) = {x ∈ C(S) : r(x) > u} and where

Λθ{Ar(u)} =

∫
Ar(u)

λr
θ(x)dx, u > 0.

The measure Λ must satisfy properties such as Λ(tA) = t−1Λ(A)
to properly define a generalized r-Pareto process.

For environmental risk assessment, the vector x is usually high-
dimensional, and the multivariate integral quickly becomes in-
tractable. Also, because the generalized r-Pareto is an asymp-
totic model fitted to sub-asymptotic data, the estimation proce-
dure must be robust to model misspecification.

• An adaptation of the gradient scoring rule (de Fondeville
and Davison, 2018b) allows statistical inference using par-
tial derivatives of the log-density function with respect to
x1, . . . , x`,
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 ,

where w is a differentiable weighting function, that vanishes
on the boundaries of Ar(u).

•Minimization of the loss function δw gives an asymptotically un-
biased and normal estimator of the model parameters θ, that
is robust and computationally cheap.

5. Application to extreme windstorm in Europe

We apply the previous results to extreme windstorms over Eu-
rope. To do so, we study 3s maximum windgusts measured ev-
ery 3 hours over the period 1979 to 2016 using data from ERA-
Interim reanalysis (Dee et al., 2011).

5.1 Storm definition
For insurers and regulators, the most damaging windstorms im-
pact areas with dense human infrastructure. Thus, we define a
storm as an exceedance of the 24-hour temporal maxima of the
spatial mean in a small region including Paris, London, Brussels
and Amsterdam, as shown in Figure 1, i.e.,

r(X) = max
i=1,...,9

|SPLBA|−1
∫
SPLBA

X(s)ds.

To suppress the effect of temporal clustering, we center the time
frame on the maxima and keep only events that are at least 48
hours apart.
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Figure 1: Area of study (colored cells) for modelling extreme
windstorms over Europe. Green cells represent the region with
high density of human infrastructure.

5.2 Windstorm frequency
We set the threshold u > 0 to obtain an overall total of 117 r-
exceedances, yielding about 3 storms per year. As a model for
Pr{r(x) > u}, we use a logistic regression with the North Atlantic
Oscillation and temperature anomaly as covariates; both were
found to be highly significant. See Figure 2.
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Figure 2: Model for the annual probability of storm occurrence.
Observed frequency (Top), modelled frequency (Second row),
mean North Atlantic Oscillation index (Third row), temperature
anomaly index (Bottom).

5.3 Storm model
For the radial component W , we use a log-Gaussian pro-
cess because classical covariance models developed in spatial-
temporal statistics for Gaussian processes, can be used to
parametrize the dependence of the Pareto family.
Figure 3 shows a simulation of a storm with an intensity equiva-
lent to storm Lothar, which occurred during the winter 1999–2000,
for which the estimated insured loss is around 8 billion dollars.
Our model estimates that we should expect a storm like Lothar
once every 19 storms, on average.

Figure 3: Simulated windstorm with an intensity equivalent to
storm Lothar, which occurred during the winter 1999.
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