Faithfully Explaining Rankings in a News Recommender System

Maartje ter Hoeve
University of Amsterdam*
Anne Schuth
De Persgroep
Daan Odijk
RTL
Maarten de Rijke
University of Amsterdam

Summary

- There is an increasing demand for algorithms to be explainable
- Explainability of ranking algorithms has never been fully addressed
- We propose: LISTEN, a faithful LISTwise Explanier
 Q-LISTEN, a Quick version of LISTEN that can run in real time
- We show that:
 LISTEN produces faithful explanations
 Q-LISTEN can learn the explanation space created by LISTEN
 (Q-)LISTEN is safe to run in production

Problem setting

- Blendle: a news recommender
- Blendle users receive a personalised selection of news articles from a wide variety of news papers every single day
- Item scores for each calculated based on user-item features
- Blendle already had heuristic reasons as explanations, which we use as baseline

Data
- Historical feature data of Blendle users - split in train, validate and test

Method: (Q-)LISTEN

- Intuition: if changing a feature value heavily affects the ranking, this feature was important for the item’s position in the ranking, if not, it was not

LISTEN - Overview

Training phase
1) Find the importance of individual feature values by changing them and see how these changes affect the ranking
2) Find points of interest

Explanation phase
3) Use the points of interest to find the most important features by observing which changes in feature values affect the ranking most
4) Return the most important features
5) The most important features are the explanations. Return these to the users in an understandable way

Q-LISTEN
- LISTEN is not efficient enough to run in production in real time
- We train an MLP to learn the explanation space and call this model Q-LISTEN
- Q-LISTEN can generate explanations in real time

Results

RQ1 - Do LISTEN and Q-LISTEN produce faithful explanations of rankings?
- We construct dummy data with labels
- LISTEN returns the correct labels, speed up steps slightly decrease the accuracy, yet significantly increase the efficiency
- Our generated explanations are faithful

RQ2 - Does the type of explanation affect users’ behaviour?
A/B test on two groups of Blendle users: heuristic vs Q-LISTEN

Conclusion

- We have investigated the explainability of ranking algorithms
- We introduced LISTEN and Q-LISTEN
- LISTEN finds the most important features for an item’s position in the ranking
- Q-LISTEN allows us to generate explanations for items in the ranking in production in real time
- An A/B-test with reasons produced by different explanations systems showed that the reading behaviour of users does not differ depending on the type of explanations they see
- It is safe and preferred to use (Q-)LISTEN in production, as (Q-)LISTEN outperforms the baseline from a transparency point of view

*Research performed while intern at Blendle

This research was partially supported by KOFL Deloitte, Amsterdam Data Science. The Bloomberg Research Grant program, the Chinese Scholarship Council, the Eiffel Faculty Research Award program, Elsevier, the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement IST-IP (2007-2010), the Swiss National Research Foundation (SNF), the Netherlands Institute for Sound and Vision, the Netherlands Organization for Scientific Research (NWO), www.wiwi.fu-berlin.de, and Yandex. All content represents the opinion of the authors, which is not necessarily shared or endorsed by their respective employers and/or sponsors.