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Motivation

In Online Learning we consider the problem of choosing between a number of possible
actions, for instance medical treatments, trading strategies or scientific models. The
learner faces a stream of problem instances, for example patients, with the goal of using
the feedback from each instance to improve the decision strategy in the future.

To be able to make good decisions, the possibilities need to be explored. This however has
a cost since the exploration is done by trying out different actions, even suboptimal ones.
A good strategy balances this exploration/exploitation tradeoff.

Commonly strategies are characterised by their worst case performance. Here we consider
how the learner can exploit easier learning scenarios and thereby improve their performance.

Abstract

We consider a scenario where the learner gets feedback from the chosen action and one
additional action. We construct a novel algorithm that maintains the canonical worst case
performance and simultaneously enjoys improved performance for two kinds of easy settings:

• Stochastic outcomes, where the outcome of each action has a constant expectation

• Arbitrary outcomes with small effective range, where the differences between the
actions’ outcomes are small for each problem instance

With this result we bypass the impossibility result of Gerchinovitz and Lattimore [2016] and
improve on a similar result by Cesa-Bianchi and Shamir [2017] by relaxing the assumptions.

Setting

Prediction with limited advice models sequential decision processes as a repeated game,
where a learner in each round chooses an actionAt out ofK possible actions. The associated
loss `At

t is revealed to and suffered by the learner. The learner then chooses a second action
Bt and observes its loss, but this is not suffered.

5.3 Prediction with Expert Advice

Notations We are given a K ⇥1 matrix of expert losses `a
t , where t 2 {1, 2, . . . } and a 2 {1, . . . , K}.
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Game Definition

For t = 1, 2, . . . :

1. Pick a row At

2. Observe the column `1t , . . . , `
K
t & su↵er `At

t

Performance Measure The performance is measured by regret

RT =

TX

t=1

`At
t � min

a

 
TX

t=1

`a
t

!
.

We will be primarily interested in expected regret E [RT ].

Algorithm We will consider the Hedge algorithm (a.k.a. exponential weights and weighted majority)
for playing this game.

Algorithm 4 Hedge (a.k.a. Exponential Weights), (Vovk, 1990, Littlestone and Warmuth, 1994)

Input: Learning rates ⌘1 � ⌘2 � · · · > 0
8a : L0(a) = 0
for t = 1, 2, ... do

8a : pt(a) = e�⌘tLt�1(a)

P
a0 e�⌘tLt�1(a0)

Sample At according to pt and play it
Observe `1t , . . . , `

K
t and su↵er `At

t

8a : Lt(a) = Lt�1(a) + `a
t

end for

Analysis We analyze the Hedge algorithm in a slightly simplified setting, where the time horizon T
is known. Unknown time horizon can be handled by using the doubling trick (see home assignment) or,
more elegantly, by a more careful analysis.

The analysis is based on the following lemma.

Lemma 5.2. Let {Xa
1 , Xa

2 , . . . }a2{1,...,K} be K sequences of non-negative numbers (Xa
t � 0 for all a and

t). Let Lt(a) =
Pt

s=1 Xa
s , let L0(a) be zero for all a and let ⌘ > 0. Finally, let pt(a) =

e�⌘Lt�1(a)

P
a0 e�⌘Lt�1(a0)

.

Then:
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Fig. 1: Each round a decision a = 1, . . . , K is made and the loss of the decision is suffered.

The performance of the learner is measured by the expected regret of the decisions made
in the first T rounds, compared to the best action in hindsight:

RT := E

[
T∑

t=1

`At
t

]
− min

a∈[K]
E

[
T∑

t=1

`at

]
. (1)

Easy data

We consider two models for the losses of each action:

Stochastic losses The first type of easiness the learner can exploit is the restriction that
the losses are generated I.I.D with expectation E[`at ] = µa for all t. Denoting the best
action by a?, the setting can be described in terms of suboptimality gaps ∆a := µa−µa?.

Effective loss range The second type of easiness is that the losses have a small range
within each round. We define the effective loss range, denoted ε, such that for every
round t and actions a, a′ we have |`at − `a

′
t | ≤ ε.
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Fig. 2: Illustration of the effective loss range. The losses span the entire unit interval, but are clustered in each round.

The surprising impossibility result of Gerchinovitz and Lattimore [2016] shows that it is
impossible to achieve a regret which is linear in ε if we only observe the played action.

Approach

The key ingredient in our approach is the use of importance weighted difference estima-
tors :

∆̃`
a

t = (K − 1)1(a = Bt)
(
`Bt
t − `At

t

)
, (2)

and their cumulative first and second moments:

Dt(a) :=

t∑

s=1

∆̃`
a

s, St(a) :=

t∑

s=1

(
∆̃`

a

s

)2

. (3)

We use an exponential weights algorithm based on these difference estimators instead of
the losses themselves. These allow us to consider not just the loss of an action itself, but the
relative loss of the action within the round, “anchoring” the estimated losses in each round
based on the second chosen action. Intuitively this increases the “resolution” at which the
losses are compared. The main played action At is chosen randomly with the probability
of At = a being

pat =
exp
(
−ηtDt−1(a)− η2

tSt−1(a)
)

∑K
a=1 exp (−ηtDt−1(a)− η2

tSt−1(a))
. (4)

Algorithm 1: Second Order Difference Adjustments (SODA)

input: Learning rate scheme ηt with ηt ≤ (2ε(K − 1))−1

Set p1 uniform over the arms, p1 = (1/K, . . . , 1/K).
for t = 1, 2, . . . do

Draw At according to pt;
Draw Bt uniformly at random from the remaining actions [K] \ {At};
Observe `At

t , `
Bt
t and suffer `At

t ;

Construct ∆̃`
a

t by equation (2);
Update Dt(a), St(a) by equation (3);
Define pt+1 by equation (4);

end

The learning rate used in the results below is ηt =
√

lnK
maxa St−1(a)+(K−1)2.

Results

The following two theorems show that our algorithm can adapt to both kinds of easiness,
while maintaining the worst case performance.

Theorem 1 For arbitrary loss sequences with effective loss range ε, the expected
regret of SODA satisfies

RT ≤ O
(
ε
√

(K − 1)T lnK
)
.

Note that a lower bound of inf supRT ≥ O
(
ε
√
KT

)
holds, which is an extension of the

lower bound in Seldin et al. [2014].

Theorem 2 For stochastic loss sequences with gaps ∆a ≤ ε, the expected regret of
SODA satisfies

RT ≤
∑

a:∆a>0

O
(
Kε2

∆a

)
.

An important point is that the two theorems hold simultaneously.

Conclusion

We have introduced a novel algorithm that adapts to two kinds of easiness simultaneously,
while being robust to worst case data. The improved performance on easy data means that
the algorithm is more suited for real life applications, where the data rarely represents the
worst case. This adaptivity comes only at the expense of a single additional observation
in each round.
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