Introduction

Goal: find highly connected subgraphs in terms of edge-connectivity:
- Provide a Degeneracy-like decomposition and ensure a more efficient computation
- Find dense subgraphs and good spreaders among them

Related work:
- Degeneracy frameworks for various similar tasks already exist as the k-core and k-truss decomposition (triangle-based degeneracy for the later)
- Several functions exist in the literature that aim to solve this problem but for most formulations those functions are also hard to approximate. [H. Gabow, Journal of Computer and System Sciences '1995]
- It was shown that most efficient spreaders are located within the k-core and the k-truss of the network [Kitsak et al., Nature Physics '10]. [M. Rossi, WWW'15]

Contributions:
- An algorithm for an edge-connectivity based extension of the k-core, in order to compute it for specific k values
- Locate nodes that perform faster and wider epidemic spreading

Preliminary Concepts and Definitions

DEFINITIONS: k-core subgraph \(C_k \), Core number \(c_k \):
- \(C_k \) is k-core subgraph of \(G = (V,E) \) if it is a maximal connected subgraph in which all nodes have degree at least \(k \)
- Each node \(v \in V \) has core number \(c_v = k \), if it belongs to a k-core but not to a \((k + 1)\)-core

DEFINITION: Edge-Connectivity: A graph is \(d \)-edge connected if it has at least two vertices and for every two vertices there are \(d \) edge disjoint paths between them.

THEOREM: Menger's theorem [K. Menger, Fundamenta Mathematicae '1927']:
- Let \(x \) and \(y \) be two distinct vertices of \(G \) then the size of the minimum edge cut for \(x \) and \(y \) is equal to the number of pairwise edge-independent paths from \(x \) to \(y \).
- Extension to subgraphs: A maximal subgraph disconnected by no less than a \(k \)-edge cut is identical to a maximal subgraph with a minimum number \(k \) of edge-independent paths between any \(x, y \) pairs of nodes in the subgraph.

DEFINITIONS: k-Edge-Connectivity Core Number:
- As an application of Menger's theorem we define an edge-connectivity function in means of the minimal cut in a graph \(G \):
 \[
 \lambda(S) = \min\{|e| \in E(G) | |e| \cap S \neq \emptyset \land |e| \cap (V(G) \setminus S) \neq \emptyset\} \]
 A graph \(G \) is \(d \)-edge connected if and only if \(\lambda(G) \geq d \).
- Let \(G \) be a graph. We define the edge-connectivity degeneracy of \(G \) as a follows:
 \[
 \lambda^*(G) = \max\{\lambda(H) | H \subseteq G \}
 \]

FUNDAMENTAL RESULTS: Density and Degeneracy Inequalities: With \(v \) being \(\epsilon(G) = |E(G)| \cdot |V(G)| \), and \(\delta \) the minimal degree, \(\delta(G) = \min\{\deg(v) | v \in V(G)\} \):
- \(2\epsilon(G) \geq \delta^2(G) \geq \lambda^*(G) \geq \epsilon(G) \)

k-Edge-Connectivity Core Algorithm Illustration (k=3)

Visualisation

Datasets

<table>
<thead>
<tr>
<th>Network name</th>
<th># Nodes</th>
<th># Edges</th>
<th>k-core</th>
<th>K-truss</th>
<th>C -</th>
<th>T</th>
<th>Epidemic threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMAIL-EMAIL</td>
<td>33,686</td>
<td>180,811</td>
<td>54</td>
<td>22</td>
<td>280</td>
<td>40</td>
<td>0.0084</td>
</tr>
<tr>
<td>WIKI-VOTE</td>
<td>7,066</td>
<td>100,736</td>
<td>53</td>
<td>23</td>
<td>286</td>
<td>50</td>
<td>0.0072</td>
</tr>
</tbody>
</table>

Experimental Evaluation

Method | Time Step | Final step | Max step |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>edge core</td>
<td>21.47</td>
<td>250.93</td>
<td>2,647.74</td>
</tr>
<tr>
<td>EMAIL-EMAIL</td>
<td>8.44</td>
<td>204.08</td>
<td>2,596.52</td>
</tr>
<tr>
<td>truss</td>
<td>4.78</td>
<td>152.55</td>
<td>2,465.60</td>
</tr>
<tr>
<td>core</td>
<td>1.92</td>
<td>10.65</td>
<td>2,371.87</td>
</tr>
<tr>
<td>top degree</td>
<td>6.89</td>
<td>155.48</td>
<td>2,465.60</td>
</tr>
<tr>
<td>edge core</td>
<td>5.15</td>
<td>24.72</td>
<td>626.09</td>
</tr>
<tr>
<td>WIKI-VOTE</td>
<td>2.92</td>
<td>15.27</td>
<td>560.66</td>
</tr>
<tr>
<td>core</td>
<td>1.92</td>
<td>10.65</td>
<td>466.01</td>
</tr>
<tr>
<td>top degree</td>
<td>2.43</td>
<td>12.05</td>
<td>502.88</td>
</tr>
</tbody>
</table>

Table: Average number of infected nodes for some steps of the SIR model, using \(\gamma \) close to the epidemic threshold of each graph and \(\gamma = 0.8 \)

- The Edge-core method achieves higher infection rate during the first steps
- The total number of infected nodes at the end of the process is larger, while the fade out occurs earlier