Transferring Knowledge for Tilt-Dependent Radio Map Prediction

Claudia Pareraa, Alessandro E. C. Redondia, Matteo Cesanaa, Qi Liaob, Lutz Ewea and Cristian Tatinob

aDEIB, Politecnico di Milano, Milan, Italy
bNokia Bell Labs, Stuttgart, Germany
cLinköping University, Linköping, Sweden

Motivation

- The next generation of mobile networks (5G) will support more users, higher data rates, reduced latency, improved energy efficiency, etc...
- In this complex scenario Machine Learning will play a major role for automatic network configuration
- Antenna deployment for all the possible tilt configurations is expensive in cost, time and performance even for operator and the final user

Problem Formulation

- How to predict the performance of a given network configuration by leveraging performance information of diverse network configurations analyzing:
 - a different tilt configuration of the same antenna
 - a different antenna with the same tilt configuration
- Given \{s_i(x(i)) : i \in \mathcal{M}_n\}, estimate the unknown signal strength \(\hat{s}_i(x(j))\) at the same or different locations, \(x_j\), under diverse and different network configuration domains, that is \(x_j, j \in \mathcal{M}_m\) with \(m \neq k\) and/or \(n \neq h\).
- \(K\) base stations and \(H\) number of tilt configurations
- \(s_i(x)\) RSRP received at a geolocation in base station under configuration \(\mathcal{M}_n\), set of locations where the measurements for base station \(K\) under configuration \(H\) were taken

Data Collection

- 3.5 - 10\(^3\) Reference Signal Received Power (RSRP) outdoor measurements collected in Espoo, Finland, November 2016, using an Android device by walking an 8km path multiple times
- Two LTE commercial BSs with three different sectors (PCI)

Machine Learning Solutions

- Location-aware Approach
 - Baseline
 \[\hat{s}(x) = s(x), \quad x = \text{argmin}_{x \in \mathcal{M}} d(x, x). \] (1)
 - Adjusted Baseline:
 \[\hat{s}(x) = s(x) + \Delta_{\theta}(x, x) + \Delta_{\beta}(x, x), \quad x = \text{argmin}_{x \in \mathcal{M}} d(x, x). \] (2)
 \[\Delta_{\theta}(x, x) = \hat{\eta}(x) - \eta(x) \text{ and } \Delta_{\beta}(x, x) = \gamma(x) - \gamma(x). \] (3)
 - K-Nearest Neighbor with Inverse Distance Weighting
 \[\hat{s}(x) = \sum_{i \in \mathcal{M}} w_i s(x_i), \quad w_i = \frac{d(x, x_i)}{\sum_{j \in \mathcal{M}} d(x, x_j)^{-1}}. \] (4)
- Geometric-aware Approach:
 - Multivariate Linear Regression
 \[\hat{s}(x) = \Theta^T x, \quad x = \{1, \theta_1, \theta_2, \alpha, \beta\}^T \] (5)
 - Random Forest
 - XGBoost

Evaluation Metrics

- Performance Measures
 \[
 \text{MAE}(x, \hat{x}) = \frac{1}{n} \sum_{i=0}^{n} |x_i - \hat{x}_i| \]
 \[
 \text{MAPE} = \frac{100}{n} \sum_{i=0}^{n} \frac{|x_i - \hat{x}_i|}{x_i}.
 \]
- Domain Distance Measures
 \[
 D_{DD}(d) = \sum_{i=1}^{n} p^0(i) \log \frac{p^0(i)}{p^0(i)} + \sum_{i=1}^{n} p^1(i) \log \frac{p^1(i)}{p^0(i)}
 \]
 \[
 DD = D_{KL}(d) + D_{KL}(d) + D_{KL}(d).
 \]

Numeric Results

1. Tilt to Tilt Transfer Knowledge

2. PCI to PCI Knowledge Transfer

Conclusions

- The prediction performance is highly dependent on the difference between data distributions of training and testing domains
- Different approaches applied to increase domain similarity:
 - Choosing the training set obtained from a tilt setting with higher similarity to the testing domain
 - Adding to the training set a limited number of samples from the testing domain