
We start from a general differential equation of the form:

! ", $, $%, $%%, $%%%, … = 0

where $% = )*
)+ , …

with fixed boundary conditions: $ ", = $,, …
The goal is to learn $ " → .$(", 0) using a deep learning 
approach, where θ are the parameters of the NN

OBJECTIVE
The proposed approach differ from the classical one for the
following reasons:
§ differentiable: the solution is a neural network that is easily

differentiable with relation to the input variables (and not
only to the parameters) through autograd methods;

§ complete: the solution is defined in the whole domain, not
only in a fixed set of points;

§ generic: not constrained to the type of the equation;
§ robust: not heavily dependent to the differential equation;
§ parallelizable: since a NN is easily parallelizable.

RESULTS
METHOD

Classical approaches for the numerical solution of ordinary
and partial differential equations are widely used due to their
effectiveness and simplicity.
In this project, we investigate the application of artificial
neural networks in the field of numerical approximation of
differential equations, since the Universal approximation
theorem states that a shallow feed-forward neural network is
able to approximate any continuous function to a given
precision if the number of hidden neurons is big enough.

ABSTRACT

The error is very low, thus the NN is a good approximator of
the solution of the DEs.

The error decreases increasing the number of training points,
while, increasing H, it remains stable, suggesting that a large
training set is needed but too many hidden neurons are not
useful.

Marco Di Giovanni1
Marco Brambilla1, Pavlos Protopapas2

marco.digiovanni@polimi.it, marco.brambilla@polimi.it, pavlos@seas.harvard.edu

Using Artificial Neural Network 
to solve ODE and PDE

1 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
2 Institute for Applied Computational Science, Harvard University, Boston, United States

Results of ODE and PDE

As a starting point, we 
chose an ANN with a 
simple architecture: a 
shallow fully connected 
NN with one hidden 
layer of H neurons, one 
input (t) and one 
output (x(t)), see 
figure.
The activation function 
chosen is a Logsigmoid:

2 $ = log 1
1 + 89*

The LBFGS algorithm is used, a very memory intense 
optimizer, since the quantity of data is small enough.
The NN is trained to minimize the loss function

loss = !(", .$ " , :$% " , … )
in a set of fixed points (randomly selected in the interval 
previously defined).
This an unsupervised approach: there is no need of training 
labels $ " .
.$ " can be defined to satisfy automatically the boundary 
conditions and ease the training.

mailto:marco.digiovanni@polimi.it
mailto:marco.brambilla@polimi.it
mailto:pavlos@polimi.it

