Regularizing Text Classification with Topics

Konstantinos Skianis, Michalis Vazirgiannis

LIX, École Polytechnique, France

Motivation	I. Structured Regularization	
Text categorization is hard: a high dimensionality b prone to overfitting b state-of-the-art structured regularization is slow due to overlapping clusters Regularization is necessary: a Critical for language modeling, structured prediction, and classification b Prior on the feature weights b Find the optimal weights: $\theta^* = \operatorname{argmin}_{\theta} \underbrace{\sum_{i=1}^{N} \mathcal{L}(\mathcal{X}^i, \theta, y^i)}_{empirical risk} + \underbrace{\lambda \Omega(\theta)}_{penalty term}$	Group lasso: $\Omega(\theta) = \lambda \sum_{g} \lambda_{g} \theta_{g} _{2}$ Objective: $\Omega_{las}(\theta) + \Omega_{glas}(\mathbf{v}) + \mathcal{L}(\theta)$ $+ \mathbf{u}^{\top}(\mathbf{v} - M\theta) + \frac{\rho}{2} \mathbf{v} - M\theta _{2}^{2}$ Iterative update of θ , \mathbf{v} and \mathbf{u} : $\min_{\theta} \Omega_{las}(\theta) + \mathcal{L}(\theta) + \mathbf{u}^{\top} M\theta + \frac{\rho}{2} \mathbf{v} - M\theta _{2}^{2}$ $\min_{\mathbf{v}} \Omega_{glas}(\mathbf{v}) + \mathbf{u}^{\top} \mathbf{v} + \frac{\rho}{2} \mathbf{v} - M\theta _{2}^{2}$ $\mathbf{u} = \mathbf{u} + \rho(\mathbf{v} - M\theta)$	Algorithm ADMMInput: augmented Lagrangian variable ρ , λ_{glas} and λ_{las} 1: while update in weights not small do2: $\theta = \underset{\theta}{\operatorname{argmin}} \Omega_{las}(\theta) + \mathcal{L}(\theta) + \frac{\rho}{2} \sum_{i=1}^{V} N_i (\theta_i - \mu_i)^2$ 3: for $g = 1$ to G do4: $v_g = \operatorname{prox}_{\Omega_{glas}, \frac{\lambda g}{\rho}}(Z_g)$ 5: end for6: $u = u + \rho(v - M\theta)$ 7: end while

II. Structured Regularization in NLP

STATISTICAL REGULARIZERS

- Network of features
- $\Box \ \Omega_{net}(\theta) = \lambda_{net} \sum \theta_k^\top M \theta_k$, where $M = \alpha (I P)^\top (I P) + \beta I$.
- Sentence Regularizer
- $\Box \ \Omega_{sen}(\boldsymbol{\theta}) = \sum_{d=1}^{D} \sum_{s=1}^{S_d} \lambda_{d,s} \|\boldsymbol{\theta}_{d,s}\|_2$

SEMANTIC REGULARIZERS:

- LDA regularizer
- LSI regularizer
- $\square \Omega_{LDA,LSI}(\boldsymbol{\theta}) = \sum_{k=1}^{K} \lambda \|\boldsymbol{\theta}_k\|_2$

GRAPHICAL REGULARIZERS

Graph-of-words regularizer

- Community detection on document collection graph $\Box \ \Omega_{gow}(\boldsymbol{\theta}) = \sum_{c=1}^{C} \lambda \|\boldsymbol{\theta}_{c}\|_{2}$
- *c* ranges over the *C* communities.
- Word2vec regularizer
 - Kmeans clustering on word2vec
 - $\Box \ \Omega_{word2vec}(\boldsymbol{\theta}) = \sum_{k=1}^{\kappa} \lambda \|\boldsymbol{\theta}_k\|_2$
 - □ *K* is the number of clusters
- \hookrightarrow Why? Clusters of words will capture

III. Results

Table: Accuracy

	dataset	no reg.	lasso	ridge	elastic	group lasso							
						LDA	LSI	sentence	<u>GoW</u>	word2vec			
	science	0.946	0.916	0.954	0.954	0.968	0.968*	0.942	0.967*	0.968*			
U U	sports	0.908	0.907	0.925	0.920	0.959	0.964*	0.966	0.959*	0.946*			
20NG	religion	0.894	0.876	0.895	0.890	0.918	0.907*	0.934	0.911*	0.916^{*}			
	computer	0.846	0.843	0.869	0.856	0.891	0.885*	0.904	0.885*	0.911 *			
	vote	0.606	0.643	0.616	0.622	0.658	0.653	0.656	0.640	0.651			
int	movie	0.865	0.860	0.870	0.875	0.900	0.895	0.895	0.895	0.890			
Sentime	books	0.750	0.770	0.760	0.780	0.790	0.795	0.785	0.790	0.800			
	dvd	0.765	0.735	0.770	0.760	0.800	0.805*	0.785	0.795^{*}	0.795^{*}			
	electr.	0.790	0.800	0.800	0.825	0.800	0.815	0.805	0.820	0.815			
	kitch.	0.760	0.800	0.775	0.800	0.845	0.860*	0.855	0.840	0.855*			

Table: Model size (~sparsity)

	dataset	no rea	lasso	ridae	elastic	group lasso						
	Gatabot	et no reg. lasso ridge		Clubilo	LDA	LSI	sentence	<u>GoW</u>	word2vec			
	science	100	1	100	63	19	20	86	19	21		
S	sports	100	1	100	5	60	11	6.4	55	44		
20NG	religion	100	1	100	3	94	31	99	10	85		
	computer	100	2	100	7	40	35	77	38	18		
	vote	100	1	100	8	15	16	13	97	13		
nt	movie	100	1	100	59	72	81	55	90	62		
me	books	100	3	100	14	41	74	72	90	99		
Sentiment	dvd	100	2	100	28	64	8	8	58	64		
Se	electr.	100	4	100	6	10	8	43	8	9		

same concepts & topics

Figure: A Graph-of-words example.

IV. Regularizing Deep Learning

Sentence Classification with CNNs (Kim et al., EMNLP 2014)

Grouped Weight Sharing (Zhang et al., ACL 2017)

V. Discussion & Future Work

Superior proposed regularizers: more effective, more efficient and sparser GoW-based regularization although very fast, did not outperform the other methods Overlapping community detection algorithms failed to identify "good" groups

- Incorporating prior knowledge into neural models
- Interpretable neurons are no more important
- Networks which generalise better are harder to break

CONCLUSION

- Find and extract semantic and syntactic structures that lead to sparser feature spaces \rightarrow faster learning times
- Linguistic prior knowledge in the data can be used to improve categorization performance for baseline bag-of-words models, by mining inherent structures No significant change in results with different loss functions as the proposed regularizers are not log loss specific

dataset		word2voo		datacat		ridao	alactia	group lasso LDA LSI sentence GoW word2vec				
dataset GoW word2vec			dataset	18550	nuge	Elastic	LDA	LSI	sentence	<u>GoW</u>	word2vec	
science	79	691		science	10	1.6	1.6	15	11	76	12	19
sports	137	630	C	sports	12	3	3	7	20	67	5	9
religion	35	639	202	religion	12	3	7	10	4	248	6	20
computer	95	594		computer	7	1.4	0.8	8	6	43	5	10

Table: Number of groups.

Table: Time (in seconds) for learning with best hyperparameters.

FUTURE WORK

20NG

Find better clusters in word2vec (+overlapping with GMM) Explore alternative regularization algorithms diverging from group-lasso Interpret neurons in a deeper level Different tasks like qa, chatbots etc. Study sparsity along with groups Learning the topics simultaneously