A biologically-based mathematical model for prediction of metastatic relapse

M. Mastri1 C. Périer2 G. MacGrogan3 J. ML Ebos1 S. Benzekry2

1Department of Cancer Genetics and Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
2Inria team M OnC and Institut de Mathématiques de Bordeaux, Talence, France
3Pathology department, Institut Bergonie, Centre de Recherche et de Lutte Contre le Cancer, Bordeaux, France

BACKGROUND & OBJECTIVES

- Metastasis is the cause of 80% of deaths from solid tumors (Chaffer and Weinberg. Science 2011)
- ~20-30% of breast cancer patients will relapse with distant metastases (EBCTG, Lancet, 2005)
- For breast cancer, the current factors influencing decision for adjuvant therapy are: tumor size, nodal involvement, molecular factors (hormonal receptors and HER2 status), histological type and grade.

Objective: establish a biologically-based mathematical model for individualised prediction of metastasis

AN ELEMENTARY THEORY OF METASTATIC DYNAMICS:
GROWTH + DISSEMINATION

Growth rates of primary and secondary tumors γ and μ

$$\frac{dV_p(t)}{dt} = \gamma V_p(t)$$

Poisson process for the dissemination with rate $\delta(W) = \mu W$

Size distribution of the metastases $\rho(v)$

$$\frac{d\rho(v,t)}{dt} = \rho(v,0) - \delta(v)$$

Number of visible metastases

$$N(t) = \int_0^\infty \rho(v,t) dv$$

Total metastatic mass

$$M(t) = \int_0^\infty v \rho(v,t) dv$$

PRECLINICAL DATA AND POPULATION APPROACH

Data $\mathcal{M} = \mathcal{M}(\theta, \gamma) = \mathcal{M}(\bar{\theta} + \epsilon \mathcal{M}(\theta, \gamma))$, $\epsilon \sim \mathcal{N}(0,1)$

Individual parameter θ

$$\theta = \theta_{base} + \epsilon \theta_{base}$$

Population fits (nonlinear mixed-effects)

CONCLUSION AND FUTURE DIRECTIONS

- A biologically-based mathematical model was able to describe preclinical and clinical data of metastatic development in breast, lung and kidney cancer
- Machine learning algorithms used here don’t account for censored data + limited to prediction of relapse event at a fixed horizon
- The biological model accounts for these and could give predictions of the metastatic state at diagnosis and future evolution in order to guide therapeutic intervention
- Predictive power is only modest so far but only the primary tumor size was considered here as a feature with only other source of inter-subject variability being the dissemination parameter μ - include more features and link parameter μ and others to clinical features and biomarkers in a biologically relevant way